Classification by ensembles of neural networks
نویسندگان
چکیده
منابع مشابه
Classification by Ensembles of Neural Networks
We introduce a new procedure for training of artificial neural networks by using the approximation of an objective function by arithmetic mean of an ensemble of selected randomly generated neural networks, and apply this procedure to the classification (or pattern recognition) problem. This approach differs from the standard one based on the optimization theory. In particular, any neural networ...
متن کاملClassification of seismic signals by integrating ensembles of neural networks
We examine a classification problem in which seismic waveforms of natural earthquakes are to be distinguished from waveforms of man-made explosions. We present an integrated classification machine (ICM), which is a hierarchy of artificial neural networks (ANN’s) that are trained to classify the seismic waveforms. In order to maximize the gain of combining the multiple ANN’s, we suggest construc...
متن کاملEffect of sound classification by neural networks in the recognition of human hearing
In this paper, we focus on two basic issues: (a) the classification of sound by neural networks based on frequency and sound intensity parameters (b) evaluating the health of different human ears as compared to of those a healthy person. Sound classification by a specific feed forward neural network with two inputs as frequency and sound intensity and two hidden layers is proposed. This process...
متن کاملOn Extending Neural Networks with Loss Ensembles for Text Classification
Ensemble techniques are powerful approaches that combine several weak learners to build a stronger one. As a meta learning framework, ensemble techniques can easily be applied to many machine learning techniques. In this paper we propose a neural network extended with an ensemble loss function for text classification. The weight of each weak loss function is tuned within the training phase thro...
متن کاملCoupled Ensembles of Neural Networks
We investigate in this paper the architecture of deep convolutional networks. Building on existing state of the art models, we propose a reconfiguration of the model parameters into several parallel branches at the global network level, with each branch being a standalone CNN. We show that this arrangement is an efficient way to significantly reduce the number of parameters without losing perfo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: P-Adic Numbers, Ultrametric Analysis, and Applications
سال: 2012
ISSN: 2070-0466,2070-0474
DOI: 10.1134/s2070046612010049